An Interval Fuzzy, Double-Sided, Chance-Constrained Stochastic Programming Model for Planning the Ecological Service Value of Interconnected River Systems

Author:

Yang Luze,Cong Weiyi,Meng Chong,Cai Baofeng,Liu Miao

Abstract

The western region of Jilin Province is an ecologically fragile area with scarce water resources. The effective allocation of the limited water resources in order to obtain a higher ecological service value is an urgent requirement. In this paper, an interval fuzzy, double-sided chance-constrained, stochastic programming (IFDCP) model was used based on the interconnected river system network project in the western Jilin Province. With the objective of maximizing the value of regional ecological services, the water diversion and supplement schemes were optimized and adjusted. The model results showed that the restored water surface area of all lakes and ponds in the western region of Jilin Province was higher than the initially planned scheme in the high flow year. The water surface area fulfilled the minimum constraints, but did not fulfill the initial scheme in the normal flow year. In the low flow year, the lower limit of some of the regions had to be decreased in order to meet the allocation of the limited water resources. The proportion of floodwater resource utilization gradually increased with an increase in the flood amount. The ecological service value produced in the normal and high flow years was found to be higher than the initial scheme. The marsh wetland can produce higher ecological service value. Therefore, the core of the model optimization was introducing more water to the marsh wetland after fulfilling the basic consumption of ponds and the reed wetland. In addition, the IFDCP model was more flexible in water diversion and supplement as compared to other models that had been developed previously.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3