Assessment of Texture Features for Bermudagrass (Cynodon dactylon) Detection in Sugarcane Plantations

Author:

Girolamo-Neto Cesare Di,Sanches Ieda Del’Arco,Neves Alana Kasahara,Prudente Victor Hugo Rohden,Körting Thales Sehn,Picoli Michelle Cristina Araujo,Aragão Luiz Eduardo Oliveira e Cruz de

Abstract

Sugarcane products contribute significantly to the Brazilian economy, generating U.S. $12.2 billion in revenue in 2018. Identifying and monitoring factors that induce yield reduction, such as weed occurrence, is thus imperative. The detection of Bermudagrass in sugarcane crops using remote sensing data, however, is a challenge considering their spectral similarity. To overcome this limitation, this paper aims to explore the potential of texture features derived from images acquired by an optical sensor onboard anunmanned aerial vehicle (UAV) to detect Bermudagrass in sugarcane. Aerial images with a spatial resolution of 2 cm were acquired from a sugarcane field in Brazil. The Green-Red Vegetation Index and several texture metrics derived from the gray-level co-occurrence matrix were calculated to perform an automatic classification using arandom forest algorithm. Adding texture metrics to the classification process improved the overall accuracy from 83.00% to 92.54%, and this improvement was greater considering larger window sizes, since they representeda texture transition between two targets. Production losses induced by Bermudagrass presence reached 12.1 tons × ha−1 in the study site. This study not only demonstrated the capacity of UAV images to overcome the well-known limitation of detecting Bermudagrass in sugarcane crops, but also highlighted the importance of texture for high-accuracy quantification of weed invasion in sugarcane crops.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3