Hyperspectral Data Can Differentiate Species and Cultivars of C3 and C4 Turf Despite Measurable Diurnal Variation

Author:

Cushnahan Thomas A.12ORCID,Grafton Miles C. E.1ORCID,Pearson Diane1ORCID,Ramilan Thiagarajah1ORCID

Affiliation:

1. School of Agriculture and Environment, College of Sciences, Massey University, Palmerston North 4442, New Zealand

2. AgResearch Ltd., Grasslands Research Centre, Private Bag 11008, Palmerston North 4410, New Zealand

Abstract

The ability to differentiate species is not adequate for modern forage breeding programs. The measurement of persistence is currently a bottleneck in the breeding system that limits the throughput of cultivars to the marketplace and prevents it from being selected as a trait. The use of hyperspectral data obtained through remote sensing offers the potential to reduce guesswork by identifying the distribution of pasture species, but only if such data alone can distinguish the subtle differences within species, i.e., cultivars. The implementation of this technology faces many challenges due to the spectral and temporal variability of species. To understand the spectral variability between and within species groups, differentiation using hyperspectral data from monoculture plots of turf species was utilized. Spectral data were collected over a year using an ASD FieldSpec® and canopy pasture probe (CAPP). The plots consisted of monocultures of various species, and cultivars (a total of 10 plots). Linear discriminant analysis (LDA) was conducted on the full spectrum and reduced band data. This technique successfully differentiated the species with high accuracy (>98%). We demonstrate the potential of hyperspectral data and analysis techniques to accurately separate differences down to cultivar level. We also show that diurnal variation is measurable in the spectra but does not preclude differentiation.

Funder

PGP Project: Pioneering to Precision by Ravendsown Limited

New Zealand Ministry for Primary Industries

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3