A Novel Method for Notable Reducing Phase Transition Temperature of VO2 Films for Smart Energy Efficient Windows

Author:

Guan Huan,Zhang Dongping,Yang Yu,Liu Yi,Zhong Aihua,He Qicong,Qi Jiahua,Fan Ping

Abstract

Although Vanadium dioxide (VO2) has a potential application value for smart energy efficient windows because of its unique phase transition characteristic, there are still many obstacles that need to be overcome. One challenge is to reduce its high transition temperature (ζc = 68 °C) to near room temperature without causing its phase transition performance degradation. In this paper, a novel method was employed that covered a 3 nm ultra-thin heavy Cr-doped VO2 layer on the pure VO2 films. Compared with the as-grown pure VO2, obviously, phase transition temperature decreasing from 59.5 °C to 48.0 °C was observed. Different from previous doping techniques, almost no phase transition performance weakening occurred. Based on the microstructure and electrical parameters measurement results, the mechanism of ζc reducing was discussed. The upper ultra-thin heavy Cr-doped layer may act as the induced role of phase transition. With temperature increasing, carrier concentration increased from the upper heavy Cr-doped layer to the bottom pure VO2 layer by diffusion, and induced the carrier concentration reach to phase transition critical value from top to bottom gradually. The present method is not only a simpler technique, but also avoids expensive alloy targets.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3