Selenium Nanoparticle and Melatonin Treatments Improve Melon Seedling Growth by Regulating Carbohydrate and Polyamine

Author:

Kang Lu123ORCID,Jia Yujiao1,Wu Yangliu4,Liu Hejiang3,Zhao Duoyong3,Ju Yanjun3,Pan Canping1ORCID,Mao Jiefei2ORCID

Affiliation:

1. Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control and Innovation Center of Pesticide Research, College of Science, China Agricultural University, Beijing 100193, China

2. State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

3. Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China

4. School of Biological Science and Technology, University of Jinan, Jinan 250022, China

Abstract

Bio-stimulants, such as selenium nanoparticles and melatonin, regulate melon growth. However, the effects of individual and combined applications of selenium nanoparticles and melatonin on the growth of melon seedlings have not been reported. Here, two melon cultivars were sprayed with selenium nanoparticles, melatonin, and a combined treatment, and physiological and biochemical properties were analyzed. The independent applications of selenium nanoparticles, melatonin, and their combination had no significant effects on the plant heights and stem diameters of Jiashi and Huangmengcui melons. Compared with the controls, both selenium nanoparticle and melatonin treatments increased soluble sugars (6–63%) and sucrose (11–88%) levels, as well as the activity of sucrose phosphate synthase (171–237%) in melon leaves. The phenylalanine ammonia lyase (29–95%), trans cinnamate 4-hydroxylase (32–100%), and 4-coumaric acid CoA ligase (26–113%), as well as mRNA levels, also increased in the phenylpropanoid metabolism pathway. Combining the selenium nanoparticles and melatonin was more effective than either of the single treatments. In addition, the levels of superoxide dismutase (43–130%), catalase (14–43%), ascorbate peroxidase (44–79%), peroxidase (25–149%), and mRNA in melon leaves treated with combined selenium nanoparticles and melatonin were higher than in controls. The results contribute to our understanding of selenium nanoparticles and melatonin as bio-stimulants that improve the melon seedlings’ growth by regulating carbohydrate, polyamine, and antioxidant capacities.

Funder

Key Laboratory of Forest Plant Ecology, Ministry of Education

Tianshan Talent Plan of Xinjiang Uygur Autonomous Region Phase III

Key Cultivation Project of Scientific and Technological Innovation of Xinjiang Academy of Agricultural Sciences

2115 Talent Development Program of China Agricultural University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3