Foreign Object Debris Detection for Optical Imaging Sensors Based on Random Forest

Author:

Jing Ying,Zheng Hong,Lin Chang,Zheng Wentao,Dong Kaihan,Li Xiaolong

Abstract

In recent years, aviation security has become an important area of concern as foreign object debris (FOD) on the airport pavement has a huge potential risk to aircraft during takeoff and landing. Therefore, accurate detection of FOD is important to ensure aircraft flight safety. This paper proposes a novel method to detect FOD based on random forest. The complexity of information in airfield pavement images and the variability of FOD make FOD features difficult to design manually. To overcome this challenge, this study designs the pixel visual feature (PVF), in which weight and receptive field are determined through learning to obtain the optimal PVF. Then, the framework of random forest employing the optimal PVF to segment FOD is proposed. The effectiveness of the proposed method is demonstrated on the FOD dataset. The results show that compared with the original random forest and the deep learning method of Deeplabv3+, the proposed method is superior in precision and recall for FOD detection. This work aims to improve the accuracy of FOD detection and provide a reference for researchers interested in FOD detection in aviation.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference38 articles.

1. Air France Flight 4590http://en.wikipedia.org/wiki/Air_France_Flight_4590

2. Tarsier: Automatic Runway Fod Detection Systemhttps://www.moog.com/markets/aircraft/tarsierfod.html

3. Xsight: Advanced Radar Furthermore, Optic Sensors for Fod Detection and Homeland Securityhttps://www.xsightsys.com/index.php/fodetect/

4. Fod Finder: The Total Solution for Fod Controlhttp://www.fodfinder.com/

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3