Abstract
In this paper, we analyze a combined terrestrial-underwater optical communication link for providing high-speed optical connectivity between onshore and submerge systems. For this purpose, different transmission signaling schemes were employed to obtain performance results in terms of average bit error rate (ABER). In this sense, from the starting point of a known conditional bit-error-rate (CBER) in the absence of turbulence, the behavior of the entire system is obtained by applying an amplify-and-forward (AF) based dual-hop system: The first link is a terrestrial free-space optical (FSO) system assuming a Málaga distributed turbulence and, the second one, is an underwater FSO system with a Weibull channel model. To obtain performance results, a semi-analytical simulation procedure is applied, using a hyper-exponential fitting technique previously proposed by the authors and leading to BER closed-form expressions and high-accuracy numerical results.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献