Cooperative Terrestrial–Underwater FSO System: Design and Performance Analysis

Author:

Álvarez-Roa Carmen1,Álvarez-Roa María1ORCID,Raddo Thiago R.2,Jurado-Navas Antonio2ORCID,Castillo-Vázquez Miguel2ORCID

Affiliation:

1. Electrical Engineering Department, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

2. Commun. & Signal Processing Lab, Telecommunication Research Institute (TELMA), University of Malaga, CEI Andalucía Tech., E-29071 Malaga, Spain

Abstract

In this paper, we propose, design, and evaluate a new hybrid terrestrial–underwater optical communication link for providing high-speed connectivity between land and underwater systems. A device based on an amplify-and-forward strategy is considered and used for the hybrid optical link. A performance analysis of the proposed hybrid system is then carried out, taking into account both the atmospheric and underwater channels and their respective degradation sources. Different networking scenarios and conditions are evaluated. To this end, the channel model of the terrestrial free-space optical (FSO) link is modeled using the Gamma–Gamma distribution, while the underwater optical link is modeled using the Weibull distribution. The former takes into account atmospheric and turbulence attenuation, geometric spread and pointing errors, while the latter takes into account underwater and turbulence attenuation and geometric spread. Accordingly, a new analytical closed-form expression for the bit error rate (BER), which depends on the cumulative distribution function of the holistic hybrid system, is derived. Analytical results show that pointing errors as well as atmospheric and oceanic turbulence seriously degrade the performance of the hybrid system. In addition, ocean turbulence leads to the occurrence of a BER floor in some scenarios. This is the first time that such a network is proposed and modeled under the assumption of critical channel impairments.

Funder

Spanish Ministerio de Ciencia, Innovación y Universidades

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3