Predicting Fine Dead Fuel Load of Forest Floors Based on Image Euler Numbers

Author:

Zhang Yunlin12ORCID,Tian Lingling1

Affiliation:

1. School of Biology Sciences, Guizhou Education University, Gaoxin St. 115, Guiyang 550018, China

2. Key Laboratory of Ecology and Management on Forest Fire in Universities of Guizhou Province, Guizhou Education University, Gaoxin St. 115, Guiyang 550018, China

Abstract

The fine dead fuel load on forest floors is the most critical classification feature in fuel description systems, affecting several parameters in the manifestation of wildland fires. An accurate determination of this fine dead fuel load contributes substantially to effective wildland fire prevention, monitoring, and suppression. This study investigated the viability of incorporating image Euler numbers into predictive models of fine dead fuel load via the taking photos method. Pinus massoniana needles and Quercus fabri broad leaves—typical fuel types in karst areas—served as the research subjects. Accurate field data were collected in the Tianhe Mountain forests, China, while artificial fine dead fuelbeds of differing loads were constructed in the laboratory. Images of the artificial fuelbeds were captured and uniformly digitized according to various conversion thresholds. Thereafter, the Euler numbers were extracted, their relationship with fuel load was analyzed, and this relationship was applied to generate three load-prediction models based on stepwise regression, nonlinear fitting, and random forest algorithms. The Euler number had a significant relationship with both P. massoniana and Q. fabri fuel loads. At low conversion thresholds, the Euler number was negatively correlated with fuel load, whereas a positive correlation was recorded when this threshold exceeded a certain value. The random forest model showed the best prediction performance, with mean relative errors of 9.35% and 14.54% for P. massoniana and Q. fabri, respectively. The nonlinear fitting model displayed the next best performance, while the stepwise regression model exhibited the largest error, which was significantly different from that of the random forest model. This study is the first to propose the use of image features to predict the fine fuel load on a surface. The results are more objective, accurate, and time-saving than current fuel load estimates, benefiting fuel load research and the scientific management of wildland fires.

Funder

China National Natural Science Foundation

Guizhou Provincial Science and Technology Projects

the intelligent forest fire innovation team of higher education institutions in Guizhou Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3