Forest Canopy Fuel Loads Mapping Using Unmanned Aerial Vehicle High-Resolution Red, Green, Blue and Multispectral Imagery

Author:

Chávez-Durán Álvaro Agustín12,García Mariano1ORCID,Olvera-Vargas Miguel2ORCID,Aguado Inmaculada1ORCID,Figueroa-Rangel Blanca Lorena2,Trucíos-Caciano Ramón3ORCID,Rubio-Camacho Ernesto Alonso4ORCID

Affiliation:

1. Universidad de Alcalá, Departamento de Geología, Geografía y Medio Ambiente, Environmental Remote Sensing Research Group, Calle Colegios 2, 28801 Alcalá de Henares, Spain

2. Centro Universitario de la Costa Sur, Universidad de Guadalajara, Avenida Independencia Nacional 151, Autlán de Navarro 48900, Jalisco, Mexico

3. Centro Nacional de Investigación Disciplinaria en Relación Agua, Suelo, Planta, Atmósfera, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Margen derecho del canal del Sacramento km 6.5, Gómez Palacio 35079, Durango, Mexico

4. Campo Experimental Centro Altos de Jalisco, Centro de Investigación Regional Pacífico Centro, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Av. Biodiversidad 2470, Tepatitlán de Morelos 47600, Jalisco, Mexico

Abstract

Canopy fuels determine the characteristics of the entire complex of forest fuels due to their constant changes triggered by the environment; therefore, the development of appropriate strategies for fire management and fire risk reduction requires an accurate description of canopy forest fuels. This paper presents a method for mapping the spatial distribution of canopy fuel loads (CFLs) in alignment with their natural variability and three-dimensional spatial distribution. The approach leverages an object-based machine learning framework with UAV multispectral data and photogrammetric point clouds. The proposed method was developed in the mixed forest of the natural protected area of “Sierra de Quila”, Jalisco, Mexico. Structural variables derived from photogrammetric point clouds, along with spectral information, were used in an object-based Random Forest model to accurately estimate CFLs, yielding R2 = 0.75, RMSE = 1.78 Mg, and an average Biasrel = 18.62%. Canopy volume was the most significant explanatory variable, achieving a mean decrease in impurity values greater than 80%, while the combination of texture and vegetation indices presented importance values close to 20%. Our modelling approach enables the accurate estimation of CFLs, accounting for the ecological context that governs their dynamics and spatial variability. The high precision achieved, at a relatively low cost, encourages constant updating of forest fuels maps to enable researchers and forest managers to streamline decision making on fuel and forest fire management.

Funder

National Committee of Humanities, Science and Technology (CONAHCyT) of Mexico Unique Curriculum Vitae Scholarship

Excellence in Teaching Staff of the Community of Madrid

Publisher

MDPI AG

Reference96 articles.

1. Pyne, S.J., Andrews, P.L., and Laven, R.D. (1996). Introduction to Wildland Fire, Wiley. [2nd ed.].

2. Keane, R.E. (2015). Wildland Fuel Fundamentals and Applications, Springer International.

3. United States Department of Agriculture, Forest Service (USDA) (2023, September 16). Fuels Management, Available online: https://www.fs.usda.gov/.

4. Weise, D.R., Cobian-Iñiguez, J., and Princevac, M. (2018). Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires, Springer International Publishing.

5. Scott, J.H., and Reinhardt, E.D. (2001). Assessing Crown Fire Potential by Linking Models of Surface and Crown Fire Behavior.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3