Integrating the Strength of Multi-Date Sentinel-1 and -2 Datasets for Detecting Mango (Mangifera indica L.) Orchards in a Semi-Arid Environment in Zimbabwe

Author:

Mudereri Bester TawonaORCID,Abdel-Rahman Elfatih M.ORCID,Ndlela ShepardORCID,Makumbe Louisa Delfin Mutsa,Nyanga Christabel ChiedzaORCID,Tonnang Henri E. Z.ORCID,Mohamed Samira A.ORCID

Abstract

Generating tree-specific crop maps within heterogeneous landscapes requires imagery of fine spatial and temporal resolutions to discriminate among the rapid transitions in tree phenological and spectral features. The availability of freely accessible satellite data of relatively high spatial and temporal resolutions offers an unprecedented opportunity for wide-area land use and land cover (LULC) mapping, including tree crop (e.g., mango; Mangifera indica L.) detection. We evaluated the utility of combining Sentinel-1 (S1) and Sentinel-2 (S2) derived variables (n = 81) for mapping mango orchard occurrence in Zimbabwe using machine learning classifiers, i.e., support vector machine and random forest. Field data were collected on mango orchards and other LULC classes. Fewer variables were selected from ‘All’ combined S1 and S2 variables using three commonly utilized variable selection methods, i.e., relief filter, guided regularized random forest, and variance inflation factor. Several classification experiments (n = 8) were conducted using 60% of field datasets and combinations of ‘All’ and fewer selected variables and were compared using the remaining 40% of the field dataset and the area underclass approach. The results showed that a combination of random forest and relief filter selected variables outperformed (F1 score > 70%) all other variable combination experiments. Notwithstanding, the differences among the mapping results were not significant (p ≤ 0.05). Specifically, the mapping accuracy of the mango orchards was more than 80% for each of the eight classification experiments. Results revealed that mango orchards occupied approximately 18% of the spatial extent of the study area. The S1 variables were constantly selected compared with the S2-derived variables across the three variable selection approaches used in this study. It is concluded that the use of multi-modal satellite imagery and robust machine learning classifiers can accurately detect mango orchards and other LULC classes in semi-arid environments. The results can be used for guiding and upscaling biological control options for managing mango insect pests such as the devastating invasive fruit fly Bactrocera dorsalis (Hendel) (Diptera: Tephritidae).

Funder

International Development Research Centre

Centre de recherches pou le developpement international

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3