Mapping Paddy Rice in Rice–Wetland Coexistence Zone by Integrating Sentinel-1 and Sentinel-2 Data

Author:

Huang Duan12ORCID,Xu Lijie12,Zou Shilin12,Liu Bo12ORCID,Li Hengkai3,Pu Luoman4ORCID,Chi Hong5ORCID

Affiliation:

1. Key Laboratory of Mine Environmental Monitoring and Improving around Poyang Lake of Ministry of Natural Resources, East China University of Technology, Nanchang 330013, China

2. School of Surveying and Geoinformation Engineering, East China University of Technology, Nanchang 330013, China

3. School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China

4. College of International Tourism and Public Administration, Hainan University, Haikou 570228, China

5. Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei Province, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China

Abstract

Accurate mapping of vegetation in the coexisting area of paddy fields and wetlands plays a key role in the sustainable development of agriculture and ecology, which is critical for national food security and ecosystem balance. The phenology-based rice mapping algorithm uses unique flooding stages of paddy rice, and it has been widely used for rice mapping. However, wetlands with similar flooding signatures make rice extraction in rice–wetland coexistence challenging. In this study, we analyzed phenology differences between rice and wetlands based on the Sentinel-1/2 data and used the random forest algorithm to map vegetation in the Poyang Lake Basin, which is a typical rice–wetland coexistence zone in the south of China. The rice maps were validated with reference data, and the highest overall accuracy and Kappa coefficient was 0.94 and 0.93, respectively. First, monthly median composited and J-M distance methods were used to analyze radar and spectral data in key phenological periods, and it was found that the combination of the two approaches can effectively improve the confused signal between paddy rice and wetlands. Second, the VV and VH polarization characteristics of Sentinel-1 data enable better identification of wetlands and rice. Third, from 2018 to 2022, paddy rice in the Poyang Lake Basin showed the characteristics of planting structure around the Poyang Lake and its tributaries. The mudflats were mostly found in the middle and northeast of Poyang Lake, and the wetland vegetation was found surrounding the mudflats, forming a nibbling shape from the lake’s periphery to its center. Our study demonstrates the potential of mapping paddy rice in the rice–wetland coexistence zone using the combination of Sentinel-1 and Sentinel-2 imagery, which would be beneficial for balancing the changes between paddy rice and wetlands and improving the vulnerability of the local ecological environment.

Funder

Open Fund of Key Laboratory of Mine Environmental Monitoring and Improving around Poyang Lake, Ministry of Natural Resources

Jiangxi Provincial Natural Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3