A Robust Adaptive Traffic Signal Control Algorithm Using Q-Learning under Mixed Traffic Flow

Author:

Wei Zibin,Peng TaoORCID,Wei Sijia

Abstract

The operational and safety performance of intersections is the key to ensuring the efficient operation of urban traffic. With the development of automated driving technologies, the ability of adaptive traffic signal control has been improved according to data detected by connected and automated vehicles (CAVs). In this paper, an adaptive traffic signal control was proposed to optimize the operational and safety performance of the intersection. The proposed algorithm based on Q-learning considers the data detected by loop detectors and CAVs. Furthermore, a comprehensive analysis was conducted to verify the performance of the proposed algorithm. The results show that the average delay and conflict rate have been significantly optimized compared with fixed timing and traffic actuated control. In addition, the performance of the proposed algorithm is good in the test of the irregular intersection. The algorithm provides a new idea for the intelligent management of isolated intersections under the condition of mixed traffic flow. It provides a research basis for the collaborative control of multiple intersections.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3