Loop Detection Method Based on Neural Radiance Field BoW Model for Visual Inertial Navigation of UAVs

Author:

Zhang Xiaoyue12,Cui Yue12,Ren Yanchao3,Duan Guodong3,Zhang Huanrui12

Affiliation:

1. School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China

2. The National Key Laboratory of Inertial Technology, Beihang University, Beijing 100083, China

3. Hunan Vanguard Group Company Limited, Changsha 410137, China

Abstract

The loop closure detection (LCD) methods in Unmanned Aerial Vehicle (UAV) Visual Inertial Navigation System (VINS) are often affected by issues such as insufficient image texture information and limited observational perspectives, resulting in constrained UAV positioning accuracy and reduced capability to perform complex tasks. This study proposes a Bag-of-Words (BoW) LCD method based on Neural Radiance Field (NeRF), which estimates camera poses from existing images and achieves rapid scene reconstruction through NeRF. A method is designed to select virtual viewpoints and render images along the flight trajectory using a specific sampling approach to expand the limited observational angles, mitigating the impact of image blur and insufficient texture information at specific viewpoints while enlarging the loop closure candidate frames to improve the accuracy and success rate of LCD. Additionally, a BoW vector construction method that incorporates the importance of similar visual words and an adapted virtual image filtering and comprehensive scoring calculation method are designed to determine loop closures. Applied to VINS-Mono and ORB-SLAM3, and compared with the advanced BoW model LCDs of the two systems, results indicate that the NeRF-based BoW LCD method can detect more than 48% additional accurate loop closures, while the system’s navigation positioning error mean is reduced by over 46%, validating the effectiveness and superiority of the proposed method and demonstrating its significant importance for improving the navigation accuracy of VINS.

Publisher

MDPI AG

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3