Affiliation:
1. School of Automation Engineering, Northeast Electric Power University, Jilin, China
2. Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, Australia
Abstract
As one of the typical application-oriented solutions to robot autonomous navigation, visual simultaneous localization and mapping is essentially restricted to simplex environmental understanding based on geometric features of images. By contrast, the semantic simultaneous localization and mapping that is characterized by high-level environmental perception has apparently opened the door to apply image semantics to efficiently estimate poses, detect loop closures, build 3D maps, and so on. This article presents a detailed review of recent advances in semantic simultaneous localization and mapping, which mainly covers the treatments in terms of perception, robustness, and accuracy. Specifically, the concept of “semantic extractor” and the framework of “modern visual simultaneous localization and mapping” are initially presented. As the challenges associated with perception, robustness, and accuracy are being stated, we further discuss some open problems from a macroscopic view and attempt to find answers. We argue that multiscaled map representation, object simultaneous localization and mapping system, and deep neural network-based simultaneous localization and mapping pipeline design could be effective solutions to image semantics-fused visual simultaneous localization and mapping.
Funder
Natural Research Fund of Science and Technology Departmen of Jilin Province
Subject
Artificial Intelligence,Computer Science Applications,Software
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献