Hydrological Analysis of Extreme Rain Events in a Medium-Sized Basin

Author:

Sarchani SofiaORCID,Awol Frezer SeidORCID,Tsanis Ioannis

Abstract

The hydrological response of a medium-sized watershed with both rural and urban characteristics was investigated through event-based modeling. Different meteorological event conditions were examined, such as events of high precipitation intensity, double hydrological peak, and mainly normal to wet antecedent moisture conditions. Analysis of the hydrometric features of the precipitation events was conducted by comparing the different rainfall time intervals, the total volume of water, and the precedent soil moisture. Parameter model calibration and validation were performed for rainfall events under similar conditions, examined in pairs, in order to verify two hydrological models, the lumped HEC-HMS (Hydrologic Engineering Center’s Hydrologic Modeling System model) and the semi-distributed HBV-light (a recent version of Hydrologiska Byråns Vattenbalansavdelning model), at the exit of six individual gauged sub-basins. Model verification was achieved by using the Nash–Sutcliffe efficiency and volume error index. Different time of concentration (Tc) formulas are better applied to the sub-watersheds with respect to the dominant land uses, classifying the Tc among the most sensitive parameters that influence the time of appearance and the magnitude of the peak modeled flow through the HEC-HMS model. The maximum water content of the soil box (FC) affects most the peak flow via the HBV-light model, whereas the MAXBAS parameter has the greatest effect on the displayed time of peak discharge. The modeling results show that the HBV-light performed better in the events that had less precipitation volume compared to their pairs. The event with the higher total precipitated water produced better results with the HEC-HMS model, whereas the rest of the two high precipitation events performed satisfactorily with both models. April to July is a flood hazard period that will be worsened with the effect of climate change. The suggested calibrated parameters for severe precipitation events can be used for the prediction of future events with similar features. The above results can be used in the water resources management of the basin.

Funder

Water Resources Management and Coastal Engineering Laboratory (WRMCEL) in Technical University of Crete

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3