A Hybrid Nanofluid of Alumina and Tungsten Oxide for Performance Enhancement of a Parabolic Trough Collector under the Weather Conditions of Budapest

Author:

Al-Oran Otabeh,Lezsovits Ferenc

Abstract

Recently, there has been significant interest in the thermal performance of parabolic trough collectors. They are capable of operating and generating highly variable temperature ranges, which can be used in various applications. This paper, therefore, addressed the thermal performance model of using a parabolic trough collector under the radiation intensity level found in Budapest city, as well as the effect of inserting a hybrid nanofluid as the thermal fluid. First, a new modified hybrid nanofluid of alumina and tungsten oxide-based Therminol VP1 is used to enhance the thermal properties of the thermal fluid to be more efficient to use. This enhancement is performed under various volume concentrations and has a volume fraction of 50:50. Second, in order to demonstrate the effectiveness of the thermal element, mathematical energy balance equations were solved and simulated using MATLAB Symbolic Tools. The simulation is presented for two cases: one under a constant radiation intensity and the other under the radiation intensity level of Budapest. For both cases, the results of the dimensionless Nusselt number, heat transfer coefficient, pressure drop, exergy efficiency, and energy efficiency are described. The major findings show that a volume concentration of 4% (Al2O3 and WO3) based Therminol VP1 was the most efficient volume concentrations in both cases. For the first case, the maximum enhancement of the Nusselt number and the heat transfer coefficient are 138% and 169%, respectively. These results enhanced the thermal and exergy efficiencies by 0.39% and 0.385% at a temperature 600 K, flow rate of 150 L/min, and radiation intensity of 1000 W/m2. For the second case, the maximum exergy and energy values are recorded at midday under Budapest’s summer climatic conditions and reach 32.728% and 71.255%, respectively, under the optimum temperature of 500 K and flow rate of 150 L/min. Accordingly, the mean improvement in thermal and exergy efficiencies approximately equal to 0.25% at a high concentration, regardless of the season (summer or winter).

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3