Abstract
MgO is a kind of high secondary electron yield (SEY) material with important applications in electron multipliers. MgO coatings can be used as the electron emission layer for multiplier dynode to improve the electron gain significantly. However, the SEY investigation on ultrathin MgO coatings is not complete and needed to be supplemented urgently. In this work, a series of MgO coatings with increasing thickness were prepared by atomic layer deposition. SEY properties and energy spectra were characterized, and the effect of coating thickness on SEY was systematically analyzed. Experimental results show that SEY of MgO/Si samples rises as the coating thickness increases. Merely, SEY almost does not change with the coating thickness when the thickness exceeds 30 nm. Then, a SEY semi-empirical theory was employed to interpret the SEY regularities of MgO coatings by regarding the coating samples as ideal double-layer structures. Theoretical calculation quantitatively explained the SEY variation observed during the experiments, and further quantified the SEY contribution level of top coating and bottom substrate for the 1 nm and 20 nm MgO coatings. The work is of great significance for comprehending the SEY of ultrathin MgO coatings and expanding the applications of nanoscale coatings with high SEY.
Funder
National Key Research and Development Program of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献