Modelling laser modified secondary electron yield response of surfaces

Author:

Din Amin AORCID,Uren Robin,Wackerow Stefan,Fontenla Ana T P,Pfeiffer Stephan,Tabares Elisa G,Zolotovskaya Svetlana,Abdolvand Amin

Abstract

Abstract Electron clouds hinder the operation of particle accelerators. In the Large Hadron Collider (LHC), the copper beam screens are located within close proximity to the beam path, resulting in beam-induced electron multipacting, which is the main source of electron cloud formation. Conditions for multipacting are encountered when such surfaces have a secondary electron yield (SEY) greater than unity. Roughening the surface through laser processing offers an effective solution for reducing secondary electrons. Laser ablation leaves behind a complex rough, multi-scale geometrical surface with an altered chemical composition. Current models often over-simplify the geometry, do not have sufficient experimental data to derive input parameters, and exclude SEY-reducing mechanisms such as the surface chemistry. Leading to electron-matter interactions which do not resemble that of a real surface. Here, this complex surface is studied on copper used in the LHC, and the influence of microgeometry, inhomogeneous nanostructure and complex surface chemistry on the SEY is investigated. A novel, improved model is proposed that characterises these sophisticated structures, enabling the efficient design of surfaces to reduce SEY. To validate the model, samples were made using a variety of laser parameters. Modelling insights revealed that secondary electron suppression is not only caused by the microgeometry but also the nanostructure and chemical modification play a role. Contrary to the conventional theory, high aspect ratio structures are not necessarily required for effective SEY reduction. Currently, the model is applicable to a variety of surface morphologies and could be employed for other materials.

Funder

Science & Technology Facilities Council

Publisher

IOP Publishing

Reference57 articles.

1. Secondary electron emission;Seiler;Scan. Electron Microsc.,1982

2. Electron-cloud effects in past and future machines – walk through 50 years of electron-cloud studies;Zimmermann;Conf. Proc. C,2013

3. Beam-induced multipactoring and electron-cloud effects in particle accelerators;Caspers,2009

4. Surface resistance measurements for the LHC beam screen;Caspers,1998

5. Mechanical design aspects of the LHC beam screen;Cruikshank,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3