Driving Behavior Modeling Based on Consistent Variable Selection in a PWARX Model

Author:

Nwadiuto Jude ChibuikeORCID,Okuda HiroyukiORCID,Suzuki Tatsuya

Abstract

This paper proposes the hybrid system model identified by a PWARX (piecewise affine autoregressive exogenous) model for modeling human driving behavior. In the proposed model, the mode segmentation is carried out automatically and the optimal number of modes is decided by a novel methodology based on consistent variable selection. In addition, model flexibility is added within the ARX (autoregressive exogenous) partitions in the form of statistical variable selection. The proposed method is able to capture both the decision-making and motion-control facets of the driving behavior. The resulting model is an optimal basal model which is not affected by the choice of data, where the explanatory variables are allowed to vary within each ARX region, thus, allowing a higher-level understanding of the motion-control aspect of the driving behavior, as well as explaining the driver’s decision-making. The proposed model is applied to model the car-following driving task based on real-road driving data, as well as to ROS-CARLA-based car-following simulation and compared to Gipp’s driver model. Obtained results that show better performance both on prediction performance and mimicking actual real-road driving demonstrates and validates the usefulness of the model.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference55 articles.

1. Dawn of autonomous vehicles: review and challenges ahead

2. Autonomous Vehicles;Bartneck

3. Sensor Technology in Autonomous Vehicles : A review

4. Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles, J3016-202104,2021

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3