Abstract
This paper proposes the hybrid system model identified by a PWARX (piecewise affine autoregressive exogenous) model for modeling human driving behavior. In the proposed model, the mode segmentation is carried out automatically and the optimal number of modes is decided by a novel methodology based on consistent variable selection. In addition, model flexibility is added within the ARX (autoregressive exogenous) partitions in the form of statistical variable selection. The proposed method is able to capture both the decision-making and motion-control facets of the driving behavior. The resulting model is an optimal basal model which is not affected by the choice of data, where the explanatory variables are allowed to vary within each ARX region, thus, allowing a higher-level understanding of the motion-control aspect of the driving behavior, as well as explaining the driver’s decision-making. The proposed model is applied to model the car-following driving task based on real-road driving data, as well as to ROS-CARLA-based car-following simulation and compared to Gipp’s driver model. Obtained results that show better performance both on prediction performance and mimicking actual real-road driving demonstrates and validates the usefulness of the model.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference55 articles.
1. Dawn of autonomous vehicles: review and challenges ahead
2. Autonomous Vehicles;Bartneck
3. Sensor Technology in Autonomous Vehicles : A review
4. Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles, J3016-202104,2021
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献