Polydopamine-Mediated Ag and ZnO as an Active and Recyclable SERS Substrate for Rhodamine B with Significantly Improved Enhancement Factor and Efficient Photocatalytic Degradation

Author:

Chin Hsien-Kuo,Lin Pei-Ying,Chen Jyunde,Kirankumar RajendranathORCID,Wen Zhi-HongORCID,Hsieh Shuchen

Abstract

We demonstrate the development of an active multicomponent Ag/PDA/ZnO@GMF surface-enhanced Raman scattering (SERS) substrate via introducing bio-inspired polydopamine (PDA) in between a noble metal (AgNPs) and ZnO nanorods. The insertion of PDA enabled efficient charge redistribution between metal and semiconductor through their aromatic cores. The substrate exhibited a high enhancement factor (EF) of 1010 for the organic pollutant dye Rhodamine B (RhB). Subsequent exposure of a RhB-loaded substrate to an external UV light source developed an efficient pathway for RhB degradation and replenished the substrate for multiple usage cycles with remarkable photostability. Thus, enhanced performance of the substrate in terms of light-harvesting capability and high charge-separation efficiency was observed. In addition, the much larger surface area of the branched ZnO nanostructures served as a template for PDA assisted synthesis and controlled deposition of AgNPs, which further improved the SERS effect. Our work seeks to understand the contributions of the noble metal and semiconductor components and the synergistic effects of combining them with a facile charge transport medium to enable the fabrication of highly efficient SERS substrates for use in industrial and environmental applications.

Funder

Kaohsiung Armed Forces General Hospital

Ministry of Science and Technology, Taiwan

National Sun Yat-sen University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3