Polydopamine Ultrathin Film Growth on Mica via In-Situ Polymerization of Dopamine with Applications for Silver-Based Antimicrobial Coatings

Author:

Huang Zheng-Hao,Peng Shi-Wei,Hsieh Shu-LingORCID,Kirankumar RajendranathORCID,Huang Po-Feng,Chang Tsao-Ming,Dwivedi Atul Kumar,Chen Nan-Fu,Wu Hao-Ming,Hsieh Shuchen

Abstract

The development of polydopamine (PDA) coatings with a nanometer-scale thickness on surfaces is highly desirable for exploiting the novel features arising from the specific structure on the molecular level. Exploring the mechanisms of thin-film growth is helpful for attaining desirable control over the useful properties of materials. We present a systematic study demonstrating the growth of a PDA thin film on the surface of mica in consecutive short deposition time intervals. Film growth at each deposition time was monitored through instrumental techniques such as atomic force microscopy (AFM), water contact angle (WCA) analysis, and X-ray photoelectron spectroscopy (XPS). Film growth was initiated by adsorption of the PDA molecules on mica, with subsequent island-like aggregation, and finally, a complete molecular level PDA film was formed on the surface due to further molecular adsorption. A duration of 60−300 s was sufficient for complete formation of the PDA layer within the thickness range of 0.5−1.1 nm. An outstanding feature of PDA ultrathin films is their ability to act as a molecular adhesive, providing a foundation for constructing functional surfaces. We also explored antimicrobial applications by incorporating Ag nanoparticles into a PDA film. The Ag NPs/PDA film was formed on a surgical blade and then characterized and confirmed by SEM-EDS and XPS. The modified film inhibited bacterial growth by up to 42% on the blade after cutting through a pork meat sample.

Funder

Kaohsiung Armed Forces General Hospital

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3