SPACNet: A Simulation Platform of an Acoustic Cognitive Network

Author:

Yang Xiaoyu12ORCID,Zheng Siyuan13,Zhao Yanfeng12,Chen Dongsheng14,Tong Feng12ORCID,Hao Shuaifeng12

Affiliation:

1. College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China

2. National and Local Joint Engineering Research Center for Navigation and Location Service Technology, Xiamen University, Xiamen 361005, China

3. Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China

4. State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China

Abstract

Originating from the concept of cognitive networks (CNs), which are becoming popular in wireless terrestrial communication scenarios, underwater acoustic cognitive networks (UACNs) are drawing more and more attention in the field of the Internet of Underwater Things (IoUT). However, as the implementation of cognitive mechanisms in underwater acoustic networks is different from that of wireless scenarios, it is impossible or difficult for traditional simulation platforms to carry out simulations of UACNs. There is a lack of specialized simulation tools in terms of UACNs. To enable the quantitative evaluation of the effectiveness and performance enhancement of a UACNs in an adverse underwater environment, a simulation platform of acoustic cognitive networks (SPACNet) was designed and investigated in this article. First, based on a state machine-based protocol programming framework, the SPACNet is capable of supporting the implementation of different state-transform types associated with cognitive networking protocols. Moreover, to facilitate the realization of cognitive function at comprehensive levels of signal, information, and link, an underwater acoustic channel model with an environmental parameter input is integrated in SPACNet to generate underwater environment-driven multiple-aspect behaviors. Moreover, a simplified collision model consisting of an environment factor, channel response, and node location is used to reduce the complexity of the simulation of UACNs signal reception. A simulation was carried out to verify the effectiveness of SPACNet in evaluating the cognitive capabilities of UACNs. Finally, a field UACNs experiment was performed to validate the general consistency between the conclusion obtained with the SPACNet-based simulation and that from the field test.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3