Deep Reinforcement Learning Based Time-Domain Interference Alignment Scheduling for Underwater Acoustic Networks

Author:

Zhao NanORCID,Yao NianminORCID,Gao ZhenguoORCID,Lu Zhimao

Abstract

Message conflicts caused by large propagation delays severely affect the performance of Underwater Acoustic Networks (UWANs). It is necessary to design an efficient transmission scheduling algorithm to improve the network performance. Therefore, we propose a Deep Reinforcement Learning (DRL) based Time-Domain Interference Alignment (TDIA) scheduling algorithm (called DRLSA-IA). The main objective of DRLSA-IA is to increase network throughput and reduce collisions. In DRLSA-IA, underwater nodes are regarded as agents of DRL. Nodes intelligently learn the scheduling by continuously interacting with the environment. Therefore, DRLSA-IA is suitable for the highly dynamic underwater environment. Moreover, we design a TDIA-based reward mechanism to improve the network throughput. With the TDIA-based reward mechanism, DRLSA-IA can achieve parallel transmissions and effectively reduce conflicts. Unlike other TDIA-based algorithms that require enumeration of the state space, nodes merely feed the current state to obtain the transmission decision. DRLSA-IA solves the problem of computational expense. Simulation results show that DRLSA-IA can greatly improve the network performance, especially in terms of throughput, packet delivery ratio and fairness under different network settings. Overall, DRLSA-IA can effectively improve network performance and is suitable for ever-changing underwater environments.

Funder

National Natural Science Foundation of China

Research fund of Talents of QuanZhou City

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SPACNet: A Simulation Platform of an Acoustic Cognitive Network;Journal of Marine Science and Engineering;2023-09-19

2. An Extensive Research on Acoustic Underwater Wireless Sensor Networks (AUWSN);IRO Journal on Sustainable Wireless Systems;2022-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3