Data Generation with GAN Networks for Sidescan Sonar in Semantic Segmentation Applications

Author:

Yang Dianyu1,Wang Can1,Cheng Chensheng1,Pan Guang1,Zhang Feihu1ORCID

Affiliation:

1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

In the realm of underwater exploration, particularly within the domain of autonomous detection, sidescan sonar stands as a pivotal sensor apparatus. Autonomous detection models necessitate a substantial volume of scanned sonar image data for optimal training, yet the challenges and costs associated with acquiring such data pose significant limitations on the deployment of autonomous detection models in underwater exploration scenarios. Consequently, there arises a demand for the development of cost-effective data augmentation techniques. In the present investigation, an initial collection of scanned sonar image data was conducted during lake trials, encompassing diverse environmental regions, including rocky terrain, shadowed areas, and aquatic bodies. Subsequently, a proprietary generative adversarial network (GAN) model was devised for the purpose of synthesizing scanned sonar data. The synthesized data underwent denoising and underwent post-processing via algorithmic methods. Subsequently, similarity metrics were computed to gauge the quality of the generated scanned sonar data. Furthermore, a semantic segmentation model was meticulously crafted and trained by employing authentic data. The generated data were subsequently introduced into this semantic segmentation model. The output outcomes demonstrated that the model exhibited preliminary labeling proficiency on the generated image data, requiring only minimal manual intervention to conform to the standards of a conventional dataset. Following the inclusion of the labeled data into the original dataset and the subsequent training of the network model utilizing the expanded dataset, there was an observed discernible enhancement in the segmentation performance of the model.

Funder

National Natural Science Foundation of China

National Key Research and Development Program

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3