A High-Precision Detection Model of Small Objects in Maritime UAV Perspective Based on Improved YOLOv5

Author:

Yang Zhilin1,Yin Yong1,Jing Qianfeng1ORCID,Shao Zeyuan1

Affiliation:

1. Navigation College, Dalian Maritime University, Dalian 116026, China

Abstract

Object detection by shipborne unmanned aerial vehicles (UAVs) equipped with electro-optical (EO) sensors plays an important role in maritime rescue and ocean monitoring. However, high-precision and low-latency maritime environment small-object-detection algorithms remain a major challenge. To address this problem, this paper proposes the YOLO-BEV (“you only look once”–“bird’s-eye view”) model. First, we constructed a bidirectional feature fusion module—that is, PAN+ (Path Aggregation Network+)—adding an extremely-small-object-prediction head to deal with the large-scale variance of targets at different heights. Second, we propose a C2fSESA (Squeeze-and-Excitation Spatial Attention Based on C2f) module based on the attention mechanism to obtain richer feature information by aggregating features of different depth layers. Finally, we describe a lightweight spatial pyramid pooling structure called RGSPP (Random and Group Convolution Spatial Pyramid Pooling), which uses group convolution and random channel rearrangement to reduce the model’s computational overhead and improve its generalization ability. The article compares the YOLO-BEV model with other object-detection algorithms on the publicly available MOBDrone dataset. The research results show that the mAP0.5 value of YOLO-BEV reached 97.1%, which is 4.3% higher than that of YOLOv5, and the average precision for small objects increased by 22.2%. Additionally, the YOLO-BEV model maintained a detection speed of 48 frames per second (FPS). Consequently, the proposed method effectively balances the accuracy and efficiency of object-detection in shipborne UAV scenarios, outperforming other related techniques in shipboard UAV maritime object detection.

Funder

National Key Research and Development Program of China

2022 Liaoning Provincial Science and Technology Plan (Key) Project: R&D and Application of Autonomous Navigation System for Smart Ships in Complex Waters

Fundamental Research Funds for the Central Universities

International cooperation training program for innovative talents of Chinese Scholarships Council

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3