DFLM-YOLO: A Lightweight YOLO Model with Multiscale Feature Fusion Capabilities for Open Water Aerial Imagery

Author:

Sun Chen1,Zhang Yihong1,Ma Shuai1

Affiliation:

1. College of Information Science and Technology, Engineering Research Center of Digitized Textile & Fashion Technology, Ministry of Education, Donghua University, Shanghai 201620, China

Abstract

Object detection algorithms for open water aerial images present challenges such as small object size, unsatisfactory detection accuracy, numerous network parameters, and enormous computational demands. Current detection algorithms struggle to meet the accuracy and speed requirements while being deployable on small mobile devices. This paper proposes DFLM-YOLO, a lightweight small-object detection network based on the YOLOv8 algorithm with multiscale feature fusion. Firstly, to solve the class imbalance problem of the SeaDroneSee dataset, we propose a data augmentation algorithm called Small Object Multiplication (SOM). SOM enhances dataset balance by increasing the number of objects in specific categories, thereby improving model accuracy and generalization capabilities. Secondly, we optimize the backbone network structure by implementing Depthwise Separable Convolution (DSConv) and the newly designed FasterBlock-CGLU-C2f (FC-C2f), which reduces the model’s parameters and inference time. Finally, we design the Lightweight Multiscale Feature Fusion Network (LMFN) to address the challenges of multiscale variations by gradually fusing the four feature layers extracted from the backbone network in three stages. In addition, LMFN incorporates the Dilated Re-param Block structure to increase the effective receptive field and improve the model’s classification ability and detection accuracy. The experimental results on the SeaDroneSee dataset indicate that DFLM-YOLO improves the mean average precision (mAP) by 12.4% compared to the original YOLOv8s, while reducing parameters by 67.2%. This achievement provides a new solution for Unmanned Aerial Vehicles (UAVs) to conduct object detection missions in open water efficiently.

Funder

Shanghai Industrial Collaborative Innovation Project Foundation

Publisher

MDPI AG

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3