Affiliation:
1. College of Information Science and Technology, Engineering Research Center of Digitized Textile & Fashion Technology, Ministry of Education, Donghua University, Shanghai 201620, China
Abstract
Object detection algorithms for open water aerial images present challenges such as small object size, unsatisfactory detection accuracy, numerous network parameters, and enormous computational demands. Current detection algorithms struggle to meet the accuracy and speed requirements while being deployable on small mobile devices. This paper proposes DFLM-YOLO, a lightweight small-object detection network based on the YOLOv8 algorithm with multiscale feature fusion. Firstly, to solve the class imbalance problem of the SeaDroneSee dataset, we propose a data augmentation algorithm called Small Object Multiplication (SOM). SOM enhances dataset balance by increasing the number of objects in specific categories, thereby improving model accuracy and generalization capabilities. Secondly, we optimize the backbone network structure by implementing Depthwise Separable Convolution (DSConv) and the newly designed FasterBlock-CGLU-C2f (FC-C2f), which reduces the model’s parameters and inference time. Finally, we design the Lightweight Multiscale Feature Fusion Network (LMFN) to address the challenges of multiscale variations by gradually fusing the four feature layers extracted from the backbone network in three stages. In addition, LMFN incorporates the Dilated Re-param Block structure to increase the effective receptive field and improve the model’s classification ability and detection accuracy. The experimental results on the SeaDroneSee dataset indicate that DFLM-YOLO improves the mean average precision (mAP) by 12.4% compared to the original YOLOv8s, while reducing parameters by 67.2%. This achievement provides a new solution for Unmanned Aerial Vehicles (UAVs) to conduct object detection missions in open water efficiently.
Funder
Shanghai Industrial Collaborative Innovation Project Foundation
Reference49 articles.
1. Maritime Search and Rescue Based on Group Mobile Computing for Unmanned Aerial Vehicles and Unmanned Surface Vehicles;Yang;IEEE Trans. Ind. Inform.,2020
2. Tang, G., Ni, J., Zhao, Y., Gu, Y., and Cao, W. (2024). A Survey of Object Detection for UAVs Based on Deep Learning. Remote Sens., 16.
3. Deep Learning Techniques to Classify Agricultural Crops through UAV Imagery: A Review;Bouguettaya;Neural Comput. Appl.,2022
4. Deep Learning-Based Object Detection in Maritime Unmanned Aerial Vehicle Imagery: Review and Experimental Comparisons;Zhao;Eng. Appl. Artif. Intell.,2024
5. Comparison of Different Machine Learning Algorithms for Predicting Maize Grain Yield Using UAV-Based Hyperspectral Images;Guo;Int. J. Appl. Earth Obs. Geoinf.,2023