Effects of an Inlet Vortex on the Performance of an Axial-Flow Pump

Author:

Zhang Wenpeng,Tang Fangping,Shi Lijian,Hu Qiujin,Zhou Ying

Abstract

The formation of an inlet vortex seriously restricts axial-flow pump device performance and poses a great threat to the safe and stable operation of the entire system. In this study, the change trends of an inlet vortex and its influence on an axial-flow pump are investigated numerically and experimentally in a vertical axial-flow pump device. Four groups of fixed vortex generators (VGs) are installed in front of the impeller to create stable vortices at the impeller inlet. The vortex influence on the performance of pump device is qualitatively and quantitatively analyzed. The vortex patterns at different positions and moments in the pump device are explored to reveal the vortex shape change trend in the impeller and the pressure fluctuation induced by the vortex. The reliability and accuracy of steady and unsteady numerical results are verified by external characteristics and pressure fluctuation experimental results. Results show that it is feasible to install VGs before the impeller inlet to generate stable vortices. The vortex disturbs the inlet flow fields of the impeller, resulting in significant reductions of the axial velocity weighted average angle and the axial velocity uniformity. The vortex increases the inlet passage hydraulic loss and reduces the impeller efficiency, while it only slightly affects the guide vane and outlet passage performance. The vortex causes a low-frequency pressure pulsation and interacts with the impeller. The closer the vortex is to the impeller inlet, the more significant the impeller influence on the vortex. The blade cuts off the vortex in the impeller; afterwards, the vortex follows the blade rotation, and its strength weakens.

Funder

China Postdoctoral Science Foundation

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3