Affiliation:
1. College of Water Conservancy and Civil Engineering, China Agricultural University, Beijing, People's Republic of China
2. State Key Laboratory of Hydro Science and Hydraulic Engineering, Tsinghua University, Beijing, People's Republic of China
3. Beijing Municipal Institute of Hydraulic Engineering Planning, Design and Research, Beijing, People's Republic of China
Abstract
This work uses a commercial computational fluid dynamics code to predict three-dimensional (3D) vortex flows in a large centrifugal-pump station under construction in China and proposes relevant vortex-eliminating schemes. Because of the complex nature of the vortex flows in sumps, different turbulence models, namely, standard k–ε, re-normalization group k–ε and realizable k–ε models, are first used to investigate their feasibility in predicting flows in a small physical model of an open pump sump, and various vortex streamlines and strength in the sump are predicted, analysed, and compared with the experimental data. The comparisons show that the realizable k–ε model predicts the position and strength of free-surface, sidewall-attached, and floor-attached vortices more accurately than the other two models. Then, the realizable k–ε model is used here to investigate 3D vortex flows in a large pumping-station sump. All the various vortices, such as free-surface, wall-attached vortices, are successfully predicted. Thus, based on the information of location, shape, size, and strength of the calculated vortices, three types of vortex-eliminating devices are proposed and their corresponding vortex suppression effects are analysed. These results will be used as reference for the safe and stable operation of the Hui–Nan–Zhuang pumping station in the future.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献