Developing a Proximate Component Prediction Model of Biomass Based on Element Analysis

Author:

Park Sunyong,Kim Seok Jun,Oh Kwang Cheol,Cho La Hoon,Kim DaeHyun

Abstract

Interest in biomass has increased due to current environmental issues, and biomass analysis is usually performed using element and proximate analyses to ascertain its fuel characteristics. Mainly, element component prediction models have been developed based on proximate analysis, yet few studies have predicted proximate components based on element analysis. Hence, this study developed a proximate component prediction model following the calorific value calculation. Analysis of Pearson’s correlation coefficient showed that volatile matter (VM) and fixed carbon (FC) were positively correlated with hydrogen and oxygen, and with carbon, respectively. Thus, the model correlation was developed using a combination of the “stepwise” and “enter” methods along with linear or nonlinear regressions. The optimal models were developed for VM and ash content (Ash). The VM optimal model values were: R2 = 0.9402, root-mean-square error (RMSE) = 7.0063, average absolute error (AAE) = 14.8170%, and average bias error (ABE) = −11.7862%. For Ash, the values were: R2 = 0.9249, RMSE = 2.9614, AAE = 168.9028%, and ABE = 167.2849%, and for FC, the values were: R2 = 9505, RMSE = 6.3214, AAE = 18.3199%, and ABE = 15.0094%. This study provides a model to predict the proximate component by element analysis. Contrary to existing method, proximate analysis can be predicted based on elemental analysis, and shows that consume samples can be performed at once.

Funder

NATIONAL RESEARCH FOUNDATION OF KOREA

KOREA FOREST SERVICE

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3