Author:
Park Sunyong,Kim Seok Jun,Oh Kwang Cheol,Cho La Hoon,Kim DaeHyun
Abstract
Interest in biomass has increased due to current environmental issues, and biomass analysis is usually performed using element and proximate analyses to ascertain its fuel characteristics. Mainly, element component prediction models have been developed based on proximate analysis, yet few studies have predicted proximate components based on element analysis. Hence, this study developed a proximate component prediction model following the calorific value calculation. Analysis of Pearson’s correlation coefficient showed that volatile matter (VM) and fixed carbon (FC) were positively correlated with hydrogen and oxygen, and with carbon, respectively. Thus, the model correlation was developed using a combination of the “stepwise” and “enter” methods along with linear or nonlinear regressions. The optimal models were developed for VM and ash content (Ash). The VM optimal model values were: R2 = 0.9402, root-mean-square error (RMSE) = 7.0063, average absolute error (AAE) = 14.8170%, and average bias error (ABE) = −11.7862%. For Ash, the values were: R2 = 0.9249, RMSE = 2.9614, AAE = 168.9028%, and ABE = 167.2849%, and for FC, the values were: R2 = 9505, RMSE = 6.3214, AAE = 18.3199%, and ABE = 15.0094%. This study provides a model to predict the proximate component by element analysis. Contrary to existing method, proximate analysis can be predicted based on elemental analysis, and shows that consume samples can be performed at once.
Funder
NATIONAL RESEARCH FOUNDATION OF KOREA
KOREA FOREST SERVICE
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献