Development of a Biomass Component Prediction Model Based on Elemental and Proximate Analyses

Author:

Park Sun Yong1,Oh Kwang Cheol2,Kim Seok Jun1,Cho La Hoon1,Jeon Young Kwang1,Kim DaeHyun13

Affiliation:

1. Department of Interdisciplinary Program in Smart Agriculture, Kangwon National University, Hyoja 2 Dong 192-1, Chuncheon 24341, Republic of Korea

2. Agriculture and Life Science Research Institute, Kangwon National University, Hyoja 2 Dong 192-1, Chuncheon 24341, Republic of Korea

3. Department of Biosystems Engineering, Kangwon National University, Hyoja 2 Dong 192-1, Chuncheon 24341, Republic of Korea

Abstract

Emerging global environmental pollution issues have caused a reduction in coal utilization, leading to an increased research focus on biomass use as an alternative. However, due to the low heat values of biomass, studies in this field are still in progress. Biomass primarily comprises cellulose, hemicellulose, and lignin. To determine the composition of these three components, the measurement methods recommended by TAPPI (Technical Association of the Pulp and Paper Industry) and NREL (National Renewable Energy Laboratory) are typically employed involving equipment such as HPLC. However, these methods are time consuming. In this study, we proposed a model for predicting cellulose, hemicellulose, and lignin contents based on elemental and industrial analyses. A dataset comprising 174 samples was used to develop this model. This was validated using 25 additional samples. The R2P values for cellulose, hemicellulose, and lignin were 0.6104–0.6362, 0.4803–0.5112, and 0.7247–0.7914, respectively; however, the R2CV values obtained from the validation results were 0.7387–0.7837, 0.3280–0.4004, and 0.7427–0.7757, respectively. The optimal models selected for cellulose, lignin, and hemicellulose were C1, L2, and 100-(C1-L2) or H2, respectively. Our predictions for woody and herbaceous biomass, including torrefied samples, should be applied with caution to other biomass types due to the potential accuracy limitations. To enhance the prediction accuracy, future research should broaden the range of biomass types considered and gather more data specifically related to woody and herbaceous biomass.

Funder

Korea Forest Service

Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry

Ministry of Agriculture, Food and Rural Affairs

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3