Monocular Localization with Vector HD Map (MLVHM): A Low-Cost Method for Commercial IVs

Author:

Xiao ZhongyangORCID,Yang Diange,Wen Tuopu,Jiang Kun,Yan Ruidong

Abstract

Real-time vehicle localization (i.e., position and orientation estimation in the world coordinate system) with high accuracy is the fundamental function of an intelligent vehicle (IV) system. In the process of commercialization of IVs, many car manufacturers attempt to avoid high-cost sensor systems (e.g., RTK GNSS and LiDAR) in favor of low-cost optical sensors such as cameras. The same cost-saving strategy also gives rise to an increasing number of vehicles equipped with High Definition (HD) maps. Rooted upon these existing technologies, this article presents the concept of Monocular Localization with Vector HD Map (MLVHM), a novel camera-based map-matching method that efficiently aligns semantic-level geometric features in-camera acquired frames against the vector HD map in order to achieve high-precision vehicle absolute localization with minimal cost. The semantic features are delicately chosen for the ease of map vector alignment as well as for the resiliency against occlusion and fluctuation in illumination. The effective data association method in MLVHM serves as the basis for the camera position estimation by minimizing feature re-projection errors, and the frame-to-frame motion fusion is further introduced for reliable localization results. Experiments have shown that MLVHM can achieve high-precision vehicle localization with an RMSE of 24 cm with no cumulative error. In addition, we use low-cost on-board sensors and light-weight HD maps to achieve or even exceed the accuracy of existing map-matching algorithms.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

International Science and Technology Cooperation Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3