Nondestructive Analysis of Debonds in a Composite Structure under Variable Temperature Conditions

Author:

Sikdar ShirsenduORCID,Kundu AbhishekORCID,Jurek MichałORCID,Ostachowicz Wiesław

Abstract

This paper presents a nondestructive analysis of debonds in an adhesively-bonded carbon-fibre reinforced composite structure under variable temperature conditions. Towards this, ultrasonic guided wave propagation based experimental analysis and numerical simulations are carried out for a sample composite structure to investigate the wave propagation characteristics and detect debonds under variable operating temperature conditions. The analysis revealed that the presence of debonds in the structure significantly reduces the wave mode amplitudes, and this effect further increases with the increase in ambient temperature and debond size. Based on the debond induced differential amplitude phenomenon, an online monitoring strategy is proposed that directly uses the guided wave signals from the distributed piezoelectric sensor network to localize the hidden debonds in the structure. Debond index maps generated from the proposed monitoring strategy show the debond identification potential in the adhesively-bonded composite structure. The accuracy of the monitoring strategy is successfully verified with non-contact active infrared-thermography analysis results. The effectiveness of the proposed monitoring strategy is further investigated for the variable debond size and ambient temperature conditions. The study establishes the potential for using the proposed damage index constructed from the differential guided wave signal features as a basis for localization and characterization of debond damages in operational composite structures.

Funder

Polish National Science Centre

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3