Abstract
Abstract
The paper emphasizes an effective quantification of hidden damage in composite structures using ultrasonic guided wave (GW) propagation-based structural health monitoring (SHM) and an artificial neural network (ANN) based active infrared thermography (IRT) analysis. In recent years, there has been increased interest in using a global-local approach for damage localization purposes. The global approach is mainly used in identifying the damage, while the local approach is quantifying. This paper presents a proof-of-study to use such a global-local approach in damage localization and quantification. The main novelties in this paper are the implementation of an improved SHM GW algorithm to localize the damages, a new pixel-based confusion matrix to quantify the size of the damage threshold, and a newly developed IRT-ANN algorithm to validate the damage quantification. From the SHM methodology, it is realized that only three sensors are sufficient to localize the damage, and an ANN- IRT imaging algorithm with only five hidden neurons in quantifying the damage. The robust SHM methods effectively identified, localized, and quantified the different damage dimensions against the non-destructive testing-IRT method in different composite structures.
Funder
Narodowe Centrum Nauki
European Cooperation in Science and Technology
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing
Reference48 articles.
1. Health monitoring of composite structures using ultrasonic guided waves;Banerjee,2007
2. Experimental and numerical analysis of multiple low-velocity impact damages in a glass fibered composite structure;Balasubramaniam;Materials,2021
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献