Experimental and Numerical Analysis of Multiple Low-Velocity Impact Damages in a Glass Fibered Composite Structure

Author:

Balasubramaniam KaleeswaranORCID,Ziaja DominikaORCID,Jurek MichałORCID,Fiborek PiotrORCID,Malinowski PawełORCID

Abstract

Glass fiber-reinforced polymer structures (GFRPS) are widely used in civil and mechanical fields due to their light weight and corrosion resistance. However, these structures are prone to damage with very-low-energy impacts. The reliability of such structures is of prime importance before their installation and usage. This study aimed to identify, visualize, localize, and verify multiple barely visible impact damage (BVID) in a GFRPS using a combination of guided waves (GW)-based online structural health monitoring (SHM) and thermal strain-based nondestructive testing (NDT) approaches. Global NDT techniques like the use of a laser Doppler vibrometer (LDV) and digital image correlation (DIC) were used in the experimental analysis. The effectiveness of the experimental LDV-GW process was also checked numerically with the spectral element method (SEM). A threshold-based baseline free SHM approach to effectively localize the damages was proposed along with quick DIC verification of composite structure with thermal loading based on short-pulse heating as an excitation source. This study analyzed combined experimental- and numerical-based SHM-NDT methods in characterizing the multiple BVIDs located in a GFRPS.

Funder

National Science Center

European Union

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3