Pitfalls in Metaheuristics Solving Stoichiometric-Based Optimization Models for Metabolic Networks

Author:

Briones-Báez Mónica Fabiola1ORCID,Aguilera-Vázquez Luciano1ORCID,Rangel-Valdez Nelson1ORCID,Zuñiga Cristal2ORCID,Martínez-Salazar Ana Lidia1ORCID,Gomez-Santillan Claudia1ORCID

Affiliation:

1. División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Ciudad Madero (TECNM), Los Mangos 89440, Mexico

2. Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA

Abstract

Flux Balance Analysis (FBA) is a constraint-based method that is commonly used to guide metabolites through restricting pathways that often involve conditions such as anaplerotic cycles like Calvin, reversible or irreversible reactions, and nodes where metabolic pathways branch. The method can identify the best conditions for one course but fails when dealing with the pathways of multiple metabolites of interest. Recent studies on metabolism consider it more natural to optimize several metabolites simultaneously rather than just one; moreover, they point out the use of metaheuristics as an attractive alternative that extends FBA to tackle multiple objectives. However, the literature also warns that the use of such techniques must not be wild. Instead, it must be subject to careful fine-tuning and selection processes to achieve the desired results. This work analyses the impact on the quality of the pathways built using the NSGAII and MOEA/D algorithms and several novel optimization models; it conducts a study on two case studies, the pigment biosynthesis and the node in glutamate metabolism of the microalgae Chlorella vulgaris, under three culture conditions (autotrophic, heterotrophic, and mixotrophic) while optimizing for three metabolic intermediaries as independent objective functions simultaneously. The results show varying performances between NSGAII and MOEA/D, demonstrating that the selection of an optimization model can greatly affect predicted phenotypes.

Funder

National Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3