Abstract
Microalgae have drawn the attention of several researchers as an alternative to the traditional physicochemical CO2 capture methods, since they can convert CO2 and water into organic matter and release oxygen into the atmosphere. Microalgal growth can be improved by changing light supply, such as light intensity, wavelength, and photoperiod. In this study, the effect of different light wavelengths on CO2 capture, nutrient removal from a synthetic effluent and biomass production of Chlorella vulgaris, Tetradesmus obliquus and Neochloris oleoabundans was studied. The experiments were conducted with light-emitting diodes (LEDs) with different wavelengths: 380–750 nm (white), 620–750 nm (red) and 450–495 nm (blue). The maximum specific growth rate was obtained by N. oleoabundans with white LEDs (0.264 ± 0.005 d−1), whereas the maximum biomass productivity (14 ± 4 mgdw L−1 d−1) and CO2 fixation rate (11.4 mgCO2 L−1 d−1) were obtained by C. vulgaris (also with white LEDs). Nitrogen and phosphorus removal efficiencies obtained under white light conditions were also the highest for the three studied microalgae.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献