Potential Legacy of SWOT Mission for the Estimation of Flow–Duration Curves

Author:

Domeneghetti Alessio1ORCID,Ceola Serena1ORCID,Pugliese Alessio2ORCID,Persiano Simone3ORCID,Palazzoli Irene1ORCID,Castellarin Attilio1ORCID,Marinelli Alberto1,Brath Armando1

Affiliation:

1. Department of Civil, Chemical, Environmental and Materials Engineering, Alma Mater Studiorum Università di Bologna, 40136 Bologna, Italy

2. Arpae-SIMC, Hydro-Meteo-Climate Service of the Regional Agency for Prevention, Environment and Energy (ARPAE), 43125 Parma, Italy

3. Catastrophe Risk Modeling & Mitigation, UnipolSai Assicurazioni S.p.A., Piazza Della Costituzione 2/2, 40128 Bologna, Italy

Abstract

Flow–duration curves (FDCs) provide a compact view of the historical variability of river flows, reflecting climate conditions and the main hydrologic features of river basins. The Surface Water and Ocean Topography (SWOT) satellite mission will enable the estimation of river flows globally, by sensing rivers wider than 100 m with a sampling recurrence from 3 to 21 days. This study investigated the lifetime mission potential for FDC estimation through the comparison between remotely-sensed and empirical FDCs. We employed the Global Runoff Data Center dataset and derived SWOT-like river flows by selecting gauging stations of rivers wider than 100 m with more than 10-year long daily river flow time series. Overall, 1200 gauged river cross-sections were examined. For each site, we created a set of 24 SWOT-simulated FDCs (i.e., based on different sampling recurrences, mean biases, and random errors) to be compared against their empirical counterparts through the Nash–Sutcliffe efficiency and the mean relative error. Our results show that climate and the sampling recurrence play a key role on the performance of SWOT-based FDCs. Tropical and temperate climates performed the best, whereas arid climates mostly revealed higher uncertainties, especially for high- and low-flows.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3