A New Multimodal Map Building Method Using Multiple Object Tracking and Gaussian Process Regression

Author:

Jang Eunseong1ORCID,Lee Sang Jun1ORCID,Jo HyungGi1ORCID

Affiliation:

1. Division of Electronic Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea

Abstract

Recent advancements in simultaneous localization and mapping (SLAM) have significantly improved the handling of dynamic objects. Traditionally, SLAM systems mitigate the impact of dynamic objects by extracting, matching, and tracking features. However, in real-world scenarios, dynamic object information critically influences decision-making processes in autonomous navigation. To address this, we present a novel approach for incorporating dynamic object information into map representations, providing valuable insights for understanding movement context and estimating collision risks. Our method leverages on-site mobile robots and multiple object tracking (MOT) to gather activation levels. We propose a multimodal map framework that integrates occupancy maps obtained through SLAM with Gaussian process (GP) modeling to quantify the activation levels of dynamic objects. The Gaussian process method utilizes a map-based grid cell algorithm that distinguishes regions with varying activation levels while providing confidence measures. To validate the practical effectiveness of our approach, we also propose a method to calculate additional costs from the generated maps for global path planning. This results in path generation through less congested areas, enabling more informative navigation compared to traditional methods. Our approach is validated using a diverse dataset collected from crowded environments such as a library and public square and is demonstrated to be intuitive and to accurately provide activation levels.

Funder

Materials/Parts Technology Development Program

National Research Foundation of Korea

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3