ZnO-Based Electrochemical Immunosensor to Assess Vaccine-Induced Antibody-Mediated Immunity against Wild-Type and Gamma SARS-CoV-2 Strains

Author:

Nunez Freddy A.1ORCID,Castro Ana C. H.1ORCID,Daher Isabela P.23ORCID,Cunha-Neto Edecio24ORCID,Kalil Jorge24,Boscardin Silvia B.3ORCID,Lanfredi Alexandre J. C.5,Oliveira Vivian L. de124ORCID,Alves Wendel A.1ORCID

Affiliation:

1. Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Paulo 09210-580, Brazil

2. Laboratorio de Imunologia, INCOR, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05403-900, Brazil

3. Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, São Paulo 05508-900, Brazil

4. LIM-19, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05403-900, Brazil

5. Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, São Paulo 09210-580, Brazil

Abstract

The evaluation of serological responses to COVID-19 is crucial for population-level surveillance, developing new vaccines, and evaluating the efficacy of different immunization programs. Research and development of point-of-care test technologies remain essential to improving immunity assessment, especially for SARS-CoV-2 variants that partially evade vaccine-induced immune responses. In this work, an impedimetric biosensor based on the immobilization of the recombinant trimeric wild-type spike protein (S protein) on zinc oxide nanorods (ZnONRs) was employed for serological evaluation. We successfully assessed its applicability using serum samples from spike-based COVID-19 vaccines: ChAdOx1-S (Oxford–AstraZeneca) and BNT162b2 (Pfizer–BioNTech). Overall, the ZnONRs/ spike-modified electrode displayed accurate results for both vaccines, showing excellent potential as a tool for assessing and monitoring seroprevalence in the population. A refined outcome of this technology was achieved when the ZnO immunosensor was functionalized with the S protein from the P.1 linage (Gamma variant). Serological responses against samples from vaccinated individuals were acquired with excellent performance. Following studies based on traditional serological tests, the ZnONRs/spike immunosensor data reveal that ChAdOx1-S vaccinated individuals present significantly less antibody-mediated immunity against the Gamma variant than the BNT162b2 vaccine, highlighting the great potential of this point-of-care technology for evaluating vaccine-induced humoral immunity against different SARS-CoV-2 strains.

Funder

FAPESP

CNPq

CAPES

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3