Sensing Properties of g-C3N4/Au Nanocomposite for Organic Vapor Detection

Author:

Nasri Atefeh1,Jaleh Babak1ORCID,Daneshnazar Milad1ORCID,Varma Rajender S.2ORCID

Affiliation:

1. Department of Physics, Faculty of Science, Bu-Ali Sina University, Hamedan 65174, Iran

2. Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of Liberec (TUL), Studentska 1402/2, 46117 Liberec, Czech Republic

Abstract

Alleviating the increasingly critical environmental pollution problems entails the sensing of volatile organic compounds (VOCs) as a hazardous factor for human health wherein the development of gas sensor platforms offers an efficient strategy to detect such noxious gases. Nanomaterials, particularly carbon-based nanocomposites, are desired sensing compounds for gas detection owing to their unique properties, namely a facile and affordable synthesis process, high surface area, great selectivity, and possibility of working at room temperature. To achieve that objective, g-C3N4 (graphitic carbon nitride) was prepared from urea deploying simple heating. The ensuing porous nanosheets of g-C3N4 were utilized as a substrate for loading Au nanoparticles, which were synthesized by the laser ablation method. g-C3N4 presented a sensing sensitivity toward organic vapors, namely methanol, ethanol, and acetone vapor gases, which were significantly augmented in the presence of Au nanoparticles. Specifically, the as-prepared nanocomposite performed well with regard to the sensing of methanol vapor gas and offers a unique strategy and highly promising sensing compound for electronic and electrochemical applications.

Funder

Bu-Ali Sina University

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3