Small Object Detection in Traffic Scenes Based on YOLO-MXANet

Author:

He Xiaowei,Cheng Rao,Zheng Zhonglong,Wang Zeji

Abstract

In terms of small objects in traffic scenes, general object detection algorithms have low detection accuracy, high model complexity, and slow detection speed. To solve the above problems, an improved algorithm (named YOLO-MXANet) is proposed in this paper. Complete-Intersection over Union (CIoU) is utilized to improve loss function for promoting the positioning accuracy of the small object. In order to reduce the complexity of the model, we present a lightweight yet powerful backbone network (named SA-MobileNeXt) that incorporates channel and spatial attention. Our approach can extract expressive features more effectively by applying the Shuffle Channel and Spatial Attention (SCSA) module into the SandGlass Block (SGBlock) module while increasing the parameters by a small number. In addition, the data enhancement method combining Mosaic and Mixup is employed to improve the robustness of the training model. The Multi-scale Feature Enhancement Fusion (MFEF) network is proposed to fuse the extracted features better. In addition, the SiLU activation function is utilized to optimize the Convolution-Batchnorm-Leaky ReLU (CBL) module and the SGBlock module to accelerate the convergence of the model. The ablation experiments on the KITTI dataset show that each improved method is effective. The improved algorithm reduces the complexity and detection speed of the model while improving the object detection accuracy. The comparative experiments on the KITTY dataset and CCTSDB dataset with other algorithms show that our algorithm also has certain advantages.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference45 articles.

1. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

2. DSSD: Deconvolutional Single Shot Detector;Fu;arXiv,2017

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3