AriAplBud: An Aerial Multi-Growth Stage Apple Flower Bud Dataset for Agricultural Object Detection Benchmarking

Author:

Yuan Wenan1ORCID

Affiliation:

1. Independent Researcher, Oak Brook, IL 60523, USA

Abstract

As one of the most important topics in contemporary computer vision research, object detection has received wide attention from the precision agriculture community for diverse applications. While state-of-the-art object detection frameworks are usually evaluated against large-scale public datasets containing mostly non-agricultural objects, a specialized dataset that reflects unique properties of plants would aid researchers in investigating the utility of newly developed object detectors within agricultural contexts. This article presents AriAplBud: a close-up apple flower bud image dataset created using an unmanned aerial vehicle (UAV)-based red–green–blue (RGB) camera. AriAplBud contains 3600 images of apple flower buds at six growth stages, with 110,467 manual bounding box annotations as positive samples and 2520 additional empty orchard images containing no apple flower bud as negative samples. AriAplBud can be directly deployed for developing object detection models that accept Darknet annotation format without additional preprocessing steps, serving as a potential benchmark for future agricultural object detection research. A demonstration of developing YOLOv8-based apple flower bud detectors is also presented in this article.

Publisher

MDPI AG

Reference36 articles.

1. Object Detection in 20 Years: A Survey;Zou;Proc. IEEE,2023

2. ImageNet Classification with Deep Convolutional Neural Networks;Krizhevsky;Commun. ACM,2017

3. Convolutional Neural Network: A Review of Models, Methodologies and Applications to Object Detection;Dhillon;Prog. Artif. Intell.,2020

4. A Review on Object Detection in Unmanned Aerial Vehicle Surveillance;Ramachandran;Int. J. Cogn. Comput. Eng.,2021

5. Precision Farming: Environmental Legitimation, Commodification of Information, and Industrial Coordination;Wolf;Rural Sociol.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3