Elastic Properties and Energy Dissipation Related to the Disorder-Order Ferroelectric Transition in a Multiferroic Metal-Organic Framework [(CH3)2NH2][Fe(HCOO)3] with a Perovskite-Like Structure

Author:

Zhang Zhiying,Shen Xin,Yu Hongliang,Wang Xiaoming,Sun Lei,Yue Shumin,Cheng Dongpeng,Tang Hao

Abstract

The elastic properties and the coupling of ferroelasticity with ferromagnetism and ferroelectricy are crucial for the development of multiferroic metal-organic frameworks (MOFs) with strong magnetoelectric coupling. Elastic properties and energy dissipation related to the disorder-order ferroelectric transition in [(CH3)2NH2][Fe(HCOO)3] were studied by differential scanning calorimetry (DSC), low temperature X-ray diffraction (XRD) and dynamic mechanical analysis (DMA). DSC result indicated the transition near 164 K. XRD showed the first-order structural transition from rhombohedral R3−c to monoclinic Cc at ~145 K, accompanied by the disorder-order transition of proton ordering in the N–H…O hydrogen bonds in [(CH3)2NH2]+ as well as the distortion of the framework. For single crystals, the storage modulus was ~1.1 GPa and the loss modulus was ~0.02 GPa at 298 K. DMA of single crystals showed quick drop of storage modulus and peaks of loss modulus and loss factor near the ferroelectric transition temperature ~164 K. DMA of pellets showed the minimum of the normalized storage modulus and the peaks of loss factor at ~164 K with weak frequency dependences. The normalized loss modulus reached the maximum near 145 K, with higher peak temperature at higher frequency. The elastic anomalies and energy dissipation near the ferroelectric transition temperature are caused by the coupling of the movements of dimethylammonium cations and twin walls.

Funder

National Natural Science Foundation of China

Start-up Research Foundation of Wuhan University of Technology

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3