Prediction of Corrosion-Induced Longitudinal Cracking Time of Concrete Cover Surface of Reinforced Concrete Structures under Load

Author:

Wang JianORCID,Yuan Yongyu,Xu Qiang,Qin Hongtu

Abstract

Reinforced concrete (RC) structures suffer from different types of loads during service life, and the corrosion characteristics of steel bars embedded in concrete under load are different from those under non-load. In this paper, when the interface between steel bars and concrete (IBSC) cracked and the concrete cover surface (CCS) cracked, the effects of load on the critical corrosion depth of steel bars were analysed based on the thick-walled cylinder model, and a prediction model for the corrosion-induced longitudinal cracking (CLC) time (i.e., initiation cracking time) of the CCS of RC structures under load was proposed. Finally, the influence of load on the CLC time of CCS was discussed on the basis of the proposed prediction model. The results showed that the load had a significant effect on the critical corrosion depth of steel bars when the IBSC cracked induced by corrosion, while the influence of load on the critical corrosion depth of steel bars when the CCS cracked induced by corrosion was not obvious. When the CCS cracks induced by corrosion under load, the influence of the rust-filling layer on the critical corrosion depth of steel bars was larger than that of the load. With the increase in load, the CLC time of CCS decreased. The calculated values of the proposed prediction model were in reasonable agreement with the experimental values, which can provide a reference for durability evaluation and service life prediction of RC structures and lay the foundation for the investigation of the corrosion depth of steel bars in concrete under load.

Funder

Project of Key Laboratory of Transportation Industry for Old Bridge Inspection and Reinforcement

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3