Experimental Study on Seismic Performance of Partially Corroded Squat RC Shear Walls in Coastal Environment

Author:

Song Yuanyuan1,Wang Jian2ORCID,Du Jinsheng1

Affiliation:

1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China

2. School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China

Abstract

In coastal environments, squat reinforced concrete (RC) shear walls are susceptible to local accumulation of moisture and chloride salts, causing local corrosion in the shear walls, which in turn affects their seismic performance. Four squat RC shear wall specimens were designed considering the corrosion locations and the heights of the corroded area. The seismic performance of partially corroded squat RC shear wall specimens was analyzed through a quasi-static test. The results show that as the height of the corroded area increases from 15% to 25% of the total height, the area of the hysteresis loop of the shear walls obviously decreases. As the height of the corroded area increases from 0 to 15% and 25% of the total height, the peak and ultimate displacements of shear walls are, respectively, reduced by 6.7% and 19.2% in the positive loading direction, and are, respectively, reduced by 22.3% and 18.3% in the negative loading direction. Compared with the unilateral corroded shear wall, the area of the hysteresis loop and the stiffness of the bilateral corroded shear wall remain approximately unchanged, and the peak and ultimate displacements, the shear strain, and the ratio of shear deformation to horizontal displacement are reduced. Compared with the uncorroded shear wall, the hysteresis loop of the unilateral corroded shear wall is plump, the displacement ductility ratio and the plastic rotation angle are both increased, and the stiffness degradation is relatively slow.

Publisher

MDPI AG

Reference46 articles.

1. Experimental study on seismic restoring performance of reinforced concrete shear walls;Li;Build. Struct.,2004

2. Experimental investigation on the seismic behavior of a new self-centering shear wall with additional friction;Xu;J. Struct. Eng.,2021

3. Experimental and analytical investigations into the seismic behavior and resistance of corroded reinforced concrete walls;Zhou;Eng. Struct.,2021

4. Nonlinear finite element modeling of reinforced concrete walls with varying aspect ratios;Gullu;J. Earthq. Eng.,2021

5. Qian, J. (2018). Structural Design of Tall Buildings, China Architecture & Building Press. [3rd ed.].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3