Abstract
This paper uses two competing machine learning models, namely the Support Vector Regression (SVR) and the eXtreme Gradient Boosting (XGBoost) against the Autoregressive Integrated Moving Average ARIMAX (p,d,q) model to identify their predictive performance of the crude oil volatility index before and during COVID-19. In terms of accuracy, forecasting results reveal that the SVR model dominates the XGBoost and ARIMAX models in predicting the crude oil volatility index before COVID-19. However, the XGBoost model provides more accurate predictions of the crude oil volatility index than the SVR and ARIMAX models during the pandemic. The inverse cumulative distribution of residuals suggests that both ML models produce good results in terms of convergence. Findings also indicate that there is a fast convergence to the optimal solution when using the XGBoost model. When analyzing the feature importance, the Shapley Additive Explanation Method reveals that the SVR performs significantly better than the XGBoost in terms of feature importance. During the pandemic, the predictive power of the CBOE Volatility Index and Economic Policy Uncertainty index for forecasting the crude oil volatility index is improved compared to the pre-COVID-19 period. These findings imply that investor fear-induced uncertainty in the financial market and economic policy uncertainty are the most significant features and hence represent substantial sources of uncertainty in the oil market.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献