Abstract
PurposeSince crude oil is crucial to the nation's economic growth, crude oil futures are closely related to many other markets. Accurate forecasting can offer investors trustworthy guidance. Numerous studies have begun to consider creating new metrics from social networks to improve forecasting models in light of their rapid development. To improve the forecasting of crude oil futures, the authors suggest an integrated model that combines investor sentiment and attention.Design/methodology/approachThis study first creates investor attention variables using Baidu search indices and investor sentiment variables for medium sulfur crude oil (SC) futures by collecting comments from financial forums. The authors feed the price series into the NeuralProphet model to generate a new feature set using the output subsequences and predicted values. Next, the authors use the CatBoost model to extract additional features from the new feature set and perform multi-step predictions. Finally, the authors explain the model using Shapley additive explanations (SHAP) values and examine the direction and magnitude of each variable's influence.FindingsThe authors conduct forecasting experiments for SC futures one, two and three days in advance to evaluate the effectiveness of the proposed model. The empirical results show that the model is a reliable and effective tool for predicting, and including investor sentiment and attention variables in the model enhances its predictive power.Research limitations/implicationsThe data analyzed in this paper span from 2018 through 2022, and the forecast objectives only apply to futures prices for those years. If the authors alter the sample data, the experimental process must be repeated, and the outcomes will differ. Additionally, because crude oil has financial characteristics, its price is influenced by various external circumstances, including global epidemics and adjustments in political and economic policies. Future studies could consider these factors in models to forecast crude oil futures price volatility.Practical implicationsIn conclusion, the proposed integrated model provides effective multistep forecasts for SC futures, and the findings will offer crucial practical guidance for policymakers and investors. This study also considers other relevant markets, such as stocks and exchange rates, to increase the forecast precision of the model. Furthermore, the model proposed in this paper, which combines investor factors, confirms the predictive ability of investor sentiment. Regulators can utilize these findings to improve their ability to predict market risks based on changes in investor sentiment. Future research can improve predictive effectiveness by considering the inclusion of macro events and further model optimization. Additionally, this model can be adapted to forecast other financial markets, such as stock markets and other futures products.Originality/valueThe authors propose a novel integrated model that considers investor factors to enhance the accuracy of crude oil futures forecasting. This method can also be applied to other financial markets to improve their forecasting efficiency.
Subject
Computer Science (miscellaneous),Social Sciences (miscellaneous),Theoretical Computer Science,Control and Systems Engineering,Engineering (miscellaneous)
Reference59 articles.
1. Crude oil price prediction using particle swarm optimization and classification algorithms,2021
2. Volatility transmissions across international oil market, commodity futures and stock markets: empirical evidence from China;Energy Economics,2021
3. Optuna: a next-generation hyperparameter optimization framework,2019
4. Evaluation of ridge, elastic net and lasso regression methods in precedence of multicollinearity problem: a simulation study;Journal of Applied Economics and Business Studies,2021
5. Regression analysis: statistical modeling of a response variable;Technometrics,1999