Effect of Aging Temperature on Microstructure, Mechanical, and Wear Properties of 18Ni-300 Maraging Steel Produced by Powder Bed Fusion

Author:

Kwak Nawon1,Lim Yujin12,Heo Seokha1,Jeon Chami1,Jo Ilguk12

Affiliation:

1. Department of Advanced Materials Engineering, Dong-Eui University, Busan 47340, Republic of Korea

2. Center for Brain Busan 21 Plus Program, Dong-Eui University, Busan 47340, Republic of Korea

Abstract

Additive manufacturing technologies for metallic materials based on powder bed fusion have enormous industrial potential. In this study, we manufactured 18Ni-300 maraging steel using the powder bed fusion (PBF) process and investigated the effects of annealing temperatures of 430 °C, 490 °C, and 550 °C for 3 h on its microstructure, tensile fracture mechanism, and wear properties compared with the as-built specimen. The results show that annealing heat treatment effectively improved the dry sliding friction, wear properties, and room temperature tensile properties compared to the as-built specimen. Compared to other aging-treated samples, specimens that underwent heat treatment in optimal settings had superior properties. With optimal heat treatment, while melt pool boundaries remained, the cellular and columnar structures became finer compared to the un-treated specimens, and the number of dimples decreased. Consequently, the hardness and tensile strength improved by approximately 56.17% and 40.63%, respectively. The 18Ni-300 maraging steel sample that underwent heat treatment at optimal settings exhibited a coefficient of friction approximately 33.33% lower than the as-built alloy.

Funder

Ministry of Education

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3