The achievable mechanical properties of SLM produced Maraging Steel 300 components

Author:

Hermann Becker Thorsten,Dimitrov Dimitri

Abstract

Purpose Selective laser melting (SLM) is a process that produces near net shape parts from metallic powders. A concern with SLM-produced metals is the achievable materials performance with respect to mechanical properties. Particularly, three important aspects strongly affect the mechanical properties of the material: internal stresses resulting from steep temperature gradients and high cooling rates, the resulting microstructure and the occurrence of pores and flaws. Design/methodology/approach This paper presents SLM-produced maraging steel 300 (18Ni-300), an iron-nickel steel alloy often used in applications where high fracture toughness and strength are required. The steel’s achievable tensile, crack growth and hardness properties and the manner in which these compare to the wrought counterpart are reported. In addition, this paper investigates the porosity distribution and achievable density, residual stress levels and post-processing procedures using heat-treatments. Findings It is found that tensile properties, hardness and microstructure compare well to its wrought counterpart. Fatigue growth rates are also comparable, though they are influenced by residual stresses and microstructure. Originality/value The investigation into the mechanical performance addresses two issues: the achievable mechanical properties and the understanding of the link between the manufacturing process and the achievable material performance.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference24 articles.

1. The manufacturing of hard tools from metallic powders by selective laser melting;Journal of Materials Processing Technology,2001

2. Fatigue crack propagation in martensitic and austenitic steels;Metallurgical Transactions,1973

3. Additive manufacturing of Ti-6Al-4V components by shaped metal deposition: microstructure and mechanical properties;Materials and Design,2010

4. Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): microstructure, high cycle fatigue, and fracture behavior;Materials & Design,2012

5. Low cycle fatigue crack propagation characteristics of high strength steels;Journal of Fluids Engineering,1966

Cited by 143 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3